Animal studies confirm the safety and effectiveness of the heart patch

Milestone in the treatment of severe heart failure

The heart patch is produced from induced pluripotent stem cells derived heart muscle cells in a collagen hydrogel.

Results from rhesus macaques provide solid ground for a first-in-human investigation of heart repair with stem cell-derived engineered heart muscle. The study is a milestone for the clinical application of the 'heart patch' as an innovative treatment option for patients with advanced heart failure.

This is how the heart patch works
Implantation of a tissue engineered heart patch, called engineered heart muscle (EHM), is developed to repair the failing heart. The EHM patch is a lab-grown heart muscle made up of induced pluripotent stem cell-derived heart cells embedded in a collagen hydrogel.

First patients successfully treated
An interdisciplinary team led by Professor Wolfram-Hubertus Zimmermann, director of the Department of Pharmacology and Toxicology at the University Medical Center (UMG) and Scientific Director of the preclinical and clinical heart patch studies, together with colleagues from the UMG and UKSH, has successfully implanted the so-called "heart patch" in patients with heart failure for the first time.

Studies on rhesus monkeys decisive
The approval of this clinical trial by the responsible regulatory authority, the Paul-Ehrlich-Institute, was preceded by the documentation of safety and efficacy of the heart patch in rhesus macaques. The simulation of the clinical application in rhesus macaques at the German Primate Center - Leibniz Institute for Primate Research (DPZ) was essential to gather compelling data to support clinical translation. The researchers were able to show that implanted heart patches, consisting of up to 200 million cells, led to an improvement in heart function through re-muscularization (building of new heart muscle). Imaging techniques and tissue analysis confirmed that the implanted heart muscle cells are retained under concomitant immune suppression and strengthened the heart's pumping function.

“We have shown in rhesus macaques that cardiac patch implantation can be applied to re-muscularized the failing heart. The challenge was to generate and implant enough heart muscle cells from rhesus macaque induced pluripotent stem cells to achieve sustainable heart repair without dangerous side effects such as cardiac arrhythmia or tumor growth,” explains Professor Zimmermann. The results of the now reported investigations were crucial for the approval of the world's first clinical trial to repair the heart with tissue engineered heart muscle implants developed in the laboratory in people with advanced heart failure.

Preclinical testing of the heart patch treatment has been completed in collaboration with the DPZ and Stanford University. Based on these results, the BioVAT-HF-DZHK20 clinical trial was initiated at the UMG and UKSH in cooperation with the German Centre for Cardiovascular Research (DZHK) and Repairon GmbH in Göttingen.

Original Publication
Jebran AF, Seidler T, Tiburcy M, Daskalaki M, Kutschka I, Fujita B, Ensminger S, Bremmer F, Moussavi A, Yang H, Qin X, Mißbach S, Drummer C, Baraki H, Boretius S, Hasenauer C, Nette T, Kowallick J, Ritter CO, Lotz J, Didié M, Mietsch M, Meyer T, Kensah G, Krüger D, Sakib MS, Kaurani L, Fischer A, Dressel R, Rodriguez-Polo I, Stauske M, Diecke S, Maetz-Rensing K, Gruber-Dujardin E, Bleyer M, Petersen B, Roos C, Zhang L, Walter L, Kaulfuß S, Yigit G, Wollnik B, Levent E, Roshani B, Stahl-Henning C, Ströbel P, Legler T, Riggert J, Hellenkamp K, Voigt JU, Hasenfuß G, Hinkel R, Wu JC, Behr R & Zimmermann WH. Engineered heart muscle allografts for heart repair in primates and humans. Nature (2025).
DOI: 10.1038/s41586-024-08463-0 

Contact
Prof. Dr. Rabea Hinkel
Head Laboratory Animal Science
+49 551 3851-241
e-mail