Neuronale Netzwerke, sowohl biologischer Natur als auch in der künstlichen Intelligenz, verteilen Berechnungen auf Neuronen, um komplexe Aufgaben zu lösen. Neue Forschungen zeigen nun, wie sogenannte "kritische Zustände" genutzt werden können, um künstliche neuronalen Netze zu optimieren, die auf neuromorpher, vom Gehirn inspirierter Hardware laufen. Die Studie wurde von Wissenschaftlern der Universität Heidelberg im Rahmen des Human Brain Project (HBP) zusammen mit Forschern des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) durchgeführt und im Fachjournal Nature Communications veröffentlicht.
Komplexe Netzwerke entwickeln eine Vielzahl besonderer Eigenschaften, wenn sie sich an einem „kritischen Punkt“ befinden. In diesem Zustand, an dem Systeme ihr Verhalten schnell grundlegend ändern und z.B. zwischen Ordnung und Chaos oder zwischen Stabilität und Instabilität wechseln können, werden viele Recheneigenschaften maximiert. Aus diesem Grund wird allgemein angenommen, dass der kritische Zustand für jede Berechnung in rückgekoppelten…